Computer vision and machine learning for the material scientist

Lecture 8. Semantic Segmentation

Romain Vo

*slides adapted from $\underline{CS231n}$

Classification

DOG

<u>Classify</u> the image

Image is free <u>here</u>

Computer Vision Tasks

Classification

Semantic segmentation

DOG

DOG,CAT,BG

<u>Classify</u> the image

 $\underline{\text{Classify}}$ each pixel

Computer Vision Tasks

Classification

DOG

Semantic segmentation

DOG,CAT,BG

Instance

Segmentation

SMTH, **SMTH**, **SMTH**

Panoptic segmentation

DOG,DOG,CAT

]	Δ	ίγ	J
<u>Classify</u> the image	$\underline{Classify}$ each pixel	$\underline{\text{Segment}}$ independent	$\underline{\text{Segment}} \& \underline{\text{Classify}} \text{ independent}$
		instances	instances

Computer Vision Tasks

Classification

DOG

γ Classify the image

Semantic segmentation

DOG,CAT,BG

Instance Segmentation

SMTH, SMTH, SMTH Panoptic segmentation

DOG,DOG,CAT

	ι] γ	[γ	
)	$\underline{Classify}$ each pixel	$\underline{\text{Segment}}$ independent	$\underline{\text{Segment}} \& \underline{\text{Classify}} \text{ independent}$
		instances	instances

<u>Training data</u> = pairs of (image, mask)

image

 mask

DOG,CAT,BG

<u>Training data</u> = pairs of (image, mask)

image

 mask

DOG,CAT,BG

For each training image, each pixel in the image is assigned a label:

• For example here - BG = 0, DOG = 1, CAT = 2

<u>Training data</u> = pairs of (image, mask)

image

 mask

prediction

DOG,CAT,BG

For each training image, each pixel in the image is assigned a label:

• For example here - BG = 0, DOG = 1, CAT = 2

How do we evaluate the quality of prediction with respect to mask ?

Segmentation metrics

Let A and B be two finite sets, not simultaneously empty. We can measure their similarity using the *Jaccard* index or the *Dice coefficient*

Jaccard index
$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$
 also called IoU (Intersection over Union)
Dice coefficient $D(A, B) = \frac{2|A \cap B|}{|A|+|B|}$

When A = B we have J(A,B) = D(A,B) = 1When $A \cap B = \emptyset$ we have J(A,B) = D(A,B) = 0

Segmentation loss

We can generalize these metrics to continuous output, i.e~y , $\hat{y} \in [0,1]^n$

Jaccard loss
$$J(y, \hat{y}) = 1 - \frac{y.\hat{y}+\varepsilon}{y+\hat{y}+\varepsilon}$$

Dice loss $D(y, \hat{y}) = 1 - \frac{2y.\hat{y}+\varepsilon}{y+\hat{y}+\varepsilon}$

In practice, these two losses give similar results

<u>Training data</u> = pairs of (image, mask)

image

 mask

DOG,CAT,BG

For each training image, each pixel in the image is assigned a label:

• For example here - BG = 0, DOG = 1, CAT = 2

 $\underline{\text{Test time}}$

At test-time classify each pixel of the image

Semantic segmentation : pixel classification

Image $= H \times W$ pixels

label ? 1 pixel

Impossible to classify a single pixel without context ..

How to include context ?

Semantic segmentation : context window

Image $= H \times W$ pixels

patch =
$$H_p \times W_p$$
 pixels

Semantic segmentation : classify window

Image $= H \times W$ pixels

patch = $H_p \times W_p$ pixels

motorbike

Classification network, e.g AlexNet

Semantic segmentation : sliding window

<u>Problem 1</u>: need to extract $(H \times W)$ patches and then predict the label for each patch

Semantic segmentation : sliding window

patch = $H_p \times W_p$ pixels

motorbike

Classification network, e.g AlexNet

<u>Problem 1</u>: need to extract $(H \times W)$ patches and then predict the label for each patch

<u>Problem 2</u>: Does not reuse shared features between overlapping patches

Semantic segmentation : sliding window

Image = $H \times W$ pixels

patch = $H_p \times W_p$ pixels

motorbike

Classification network, e.g AlexNet

<u>Problem 1</u>: need to extract $(H \times W)$ patches and then predict the label for each patch

<u>Problem 2</u>: Does not reuse shared features between overlapping patches

Solution: ?

Semantic segmentation : Fully convolutional

<u>Problem 1</u>: need to extract $(H \times W)$ patches and then predict the label for each patch

<u>Problem 2</u>: Does not reuse shared features between overlapping patches

Solution: ?

Semantic segmentation : Fully convolutional

Image = $H \times W$ pixels

CNN with no down-sampling ops

Softmax

Conv - ReLU

Predictions = $H \times W$ pixels

C = 3 classes

Semantic segmentation : Fully convolutional

Image $= H \times W$ pixels

CNN with no down-sampling ops

Predictions $= H \times W$ pixels

C = 3 classes

<u>Problem 1</u>: computationally expansive and memory consuming <u>Solution</u>: ?

Semantic segmentation : Encoder – Decoder structure

C = 3 classes

- Keep the encoder-like structure of classification networks
- Use *upsampling ops* to recover the initial image resolution
- Mix information from encoder-path with decoder-path for better localization accuracy

Decoder : upsampling

Decoder : upsampling

Transposed convolution:

PSL 🔀

INES PARIS

https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html

Architecture : an alternative to downsampling

<u>Dilated convolution or *atrous* convolution :</u>

(a) A simple convolution (r = 1)

(b) A dilated convolution (r = 2)

The aim is to increase the receptive field and keep a dense (high resolution) feature map.

• dense map = better localization

Architecture : an alternative to downsampling

Dilated convolution or *atrous* convolution :

The aim is to increase the receptive field and keep a dense (high resolution) feature map.

• dense map = better localization

$\underline{\text{DeepLabV3}+\text{ architecture}}$:

• tradeoff computation budget for performance

(b) Encoder-Decoder

(c) Encoder-Decoder with Atrous Conv

Semantic segmentation : Summary

Semantic segmentation labels each pixel in an image

Semantic segmentation : Summary

Semantic segmentation labels each pixel in an image

Semantic segmentation cannot differentiate multiple instances of the same category

i.e the two DOGS in the photo

<u>CNN-based</u> :

- 2015, Ronneberger et al "U-Net: Convolutional Networks for Biomedical Image Segmentation "
- 2018, Chen et al " Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation " = DeepLabV3
- 2021, Wang et al "Deep High-Resolution Representation Learning for Visual Recognition "= HRNetV2"

Transformer-based :

- 2021, Xie et al, "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"
- 2023, Chen et al, "Vision Transformer Adapter for Dense Predictions"

<u>https://paperswithcode.com/task/semantic-segmentation</u> <u>https://github.com/qubvel/segmentation_models/tree/master</u>

Segment Anything

What is SAM \rightarrow <u>Promptable</u> instance segmentation network

The dataset and the model are open-sourced : <u>https://github.com/facebookresearch/segment-anything</u>

• trained on 11 million images containing 1 billion masks !

Do you have a use case for SAM ?

• the promptable feature of SAM makes it a go-to for fast zero-shot prototyping

<u>Example</u>: Let's say you only have an algorithm for localizing the center of specific objects, SAM could be able to segment these objects using your point inputs

Segment Anything

What is SAM \rightarrow <u>Promptable</u> instance segmentation network

The dataset and the model are open-sourced : $\underline{https://github.com/facebookresearch/segment-anything}$

• trained on 11 million images containing 1 billion masks !

 $DEMO: \underline{https://segment-anything.com/demo}$

 $SAM \ API: \underline{https://huggingface.co/docs/transformers/main/model_doc/sam}$

Thank you for your attention

*slides adapted from $\underline{CS231n}$

CVML - Segmentation

(c) Encoder-Decoder with Atrous Conv

Fig. 2. An example of a high-resolution network. Only the main body is illustrated, and the stem (two stride- 2.3×3 convolutions) is not included. There are four stages. The 1st stage consists of high-resolution convolutions. The 2nd (3rd, 4th) stage repeats two-resolution (three-resolution, four-resolution) blocks. The detail is given in Section 3.

